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Abstract This research concerns a comparison of two
neuroevolution approaches for the design of cooperative
behavior in a group of simulated mobile robots. The first
approach, termed single pool (SP), was characterized by
robot neural controllers that were derived from a single
genotype. The second approach, termed multiple pools
(MP), was characterized by robot neural controllers that
were derived from many different genotypes. The applica-
tion domain implemented a pursuit–evasion game in which
teams of robots of various sizes, termed predators, collec-
tively worked to capture (immobilize) other robots, termed
prey. The MP and SP approaches were tested, with and
without lifetime learning, for the design of cooperative prey
capture behavior within teams of predators. Results
indicated that the MP approach was superior to the SP
approach in terms of measures defined for prey-capture
performance. Specifically, the MP approach facilitated be-
havioral specializations in the predator team facilitating
emergent cooperative prey capture strategies that proved
effective for the various team sizes tested.

Key words Cooperative behavior · Simulated multi-robot
system · Pursuit–evasion · Emergence · Neuroevolution

1 Introduction

This article describes a set of experiments testing the effi-
cacy of different neuroevolution approaches for the design
of emergent, yet desired, forms of cooperative behavior in a
simulated multirobot team. The approaches for the synthe-
sis of cooperative behaviour were evaluated within teams of
simulated Khepera robots.1 The task domain is a collective
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pursuit–evasion game played by the simulated robots,
where it was the collective task of pursuers (herein called
predators) to immobilize at least one evader (herein called
prey). A control experiment using a single predator and a
single prey demonstrated that cooperation between at least
two predators was needed to accomplish this task. Coopera-
tive behavior was only evolved for a predator team, and
each prey was able to move 20% faster than the predators.
The behavior of each prey was not evolved, but instead used
a previously evolved obstacle avoidance behavior. Func-
tionally, each predator was the same in terms of movement
and sensor capabilities. The predator team was rewarded a
fitness which equated with the total time for which it was
able to immobilize a prey.

The first neuroevolution approach tested was termed
single pool (SP), in which each predator in the team was
given an identical genotype. Hence, the corresponding neu-
ral controller (phenotype) for each of the predators in the
team was the same. A variant of the SP approach was also
tested (herein called the SP variant). The SP variant imple-
mented a self-teaching neural network controller that al-
lowed for lifetime learning. The second neuroevolution
approach was termed multiple pools (MP), where each
predator was given a different genotype, meaning that the
neural controller (phenotype) at the beginning of each
predator’s lifetime was different. A variant of the MP ap-
proach was also tested (herein called the MP variant). The
MP variant implemented a self-teaching neural controller
for each predator in the team, allowing for lifetime learning
in each.

For each neuro-evolution design approach, various
group configurations (differing numbers of predators and
prey) were compared. The two approaches were evaluated
in terms of the time-period for which a prey was immobi-
lized (fitness) during the course of a given simulation, and
the geometrical stability of evolved prey capture strategies.
Results indicated that the MP design approach, which facili-
tated emergent cooperative behavior by deriving comple-
mentary and specialized behavioral roles in the predator
team, yielded superior performance in terms of the two
measures defined to quantify the team’s performance. This
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superior performance proved to be consistent for all group
configurations tested.

2 Related literature

The synthesis of collective behavior, particularly coopera-
tion, using artificial evolution mechanisms as a design meth-
odology is a research field in which there has been little
work done in either simulated2 or real-world3 problem
domains. Traditionally, the topic of emergent cooperative
behavior has been studied within the field of multiagent
systems using a top-down classical approach. Such ap-
proaches have achieved limited success given that it is ex-
tremely difficult to specify the mechanisms for cooperative
behavior in all but the simplest problem domains. For ex-
ample, emergent cooperation is commonly studied within
abstract problem domains, such as the iterated prisoners
dilemma (IPD)4 or other multiagent scenarios5 that operate
within a game theory domain. Axelrod6 explored the condi-
tions under which fundamentally selfish agents were more
likely to spontaneously cooperate. To perform this study,
Axelrod6 used the IPD game, which offers a long-term in-
centive for cooperation but a short-term incentive for defec-
tion. The IPD game has also been extended to account for
the emergence of cooperation between more than two
players,7 as well as different forms of cooperation, such as
nonmutual cooperation, where any altruistic behavior ex-
hibited increases the likelihood of cooperative behavior
being reciprocated at a later time.8 Aside from classical
artificial intelligence applications of cooperation to dis-
tributed problem domains, game theoretic models, or those
modelling abstract problem domains such as sugar-scape9

and other similar models,2 research on the emergent coop-
eration using situated and embodied agents10 has received
relatively little attention due to the inherent complexity of
such agents operating in the real world.

Concepts such as self-organization, emergence, and evo-
lution are now thought by many researchers to pose a rea-
sonable alternative to traditionalist artificial intelligence
design approaches to multiagent cooperation. For example,
artificial evolution has been used successfully for the deriva-
tion of cooperative pursuit strategies in the pursuit–evasion
domain,11,12 as well as to attain an ecological equilibrium

between groups of predators and prey.13 A common prob-
lem that confounds such research is that cooperative behav-
iors that emerge from interacting constituents of the system
are difficult to analyze, as it is nontrivial to determine what
mechanisms are responsible for what behaviors.

The utilization of neuroevolution14 for design of desired
yet emergent cooperative behaviors remains a relatively
unexplored area of research in the pursuit and evasion do-
main15 and related predator–prey systems13 using multiple
predators and prey. Various approaches have been used to
study the pursuit–evasion domain, where the task is for
multiple predators to capture a prey by surrounding it,16,17

although few researchers have investigated emergent coop-
eration in these systems, with notable exceptions such as
Denzinger and Fuchs,18 Haynes and Sen,11 and Yong and
Miikkulainen.12 Emergent cooperation in the pursuit–eva-
sion domain has obvious real-world applications such as the
formulation of military, reconnaissance, or search and res-
cue strategies in environments for which there are relatively
few possibilities of specifying cooperative behaviors a
priori.

3 Experimental setup and neuroevolution
design approaches

Experiments were conducted in simulation using an ex-
tended version of the Evorobot Khepera simulator.19

3.1 Agents, controllers, and environment

The embodiment of each predator and prey was assumed to
be a Khepera mobile robot.1 As presented in Fig. 1A, the
robots used as prey were equipped with eight infrared prox-
imity sensors, as well as a light on the top. This light could
be detected by the predator’s light sensors, and was used so
each predator could distinguish fellow predators from a
prey. As presented in Fig. 2A, robots used as predators
were equipped with eight infrared proximity and eight light
sensors positioned on their periphery. Both the predators
and the prey utilized a purely reactive behavior. As illus-
trated in Figs. 2B and 1B, respectively, behavior was
controlled by a feed-forward neural controller, directly con-

Fig. 1. A Sensor configuration
for the simulated prey Khepera
robots. B A two-layer feed-for-
ward neural network was used as
the prey controller (weights not
evolved in the pursuit–evasion
simulations)

A
B
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necting sensory input units to motor output units. For both
predators and prey, the activation of each output unit was
used to update the speed value of the corresponding wheel
every 100ms. In order to allow the prey to move 20% faster
than the speed of the predators, the activation value to each
output unit was multiplied by 1.2 before setting the wheel
speed.

In order to produce lifetime learning in the predator
controller, the connection weights of the teaching network
(presented in Fig. 2B as teaching weights) did not change
during a predator’s lifetime. However, standard connection
weights did change based on the teaching input provided by
the teaching weights. The two motor units used this teach-
ing input in order to learn using back propagation.20

Since it was the standard weights that controlled a
predator’s behavior in the environment, the predator’s be-
havior also changed. Hence, adaptation of these standard
weights within a predator’s lifetime denoted lifetime learn-
ing. Lifetime weight changes were then passed on to the
next generation of controllers by having genetic recombina-
tion and crossover operators applied after the final life cycle
of the controller. Predator controllers that did not utilize
lifetime learning did not have teaching weights, so the stan-
dard weights changed only via genetic operators applied at
the end of each controller’s lifetime, during the course of an
evolutionary process.

The simulation environment corresponded to a 1000cm
¥ 1000cm arena with no obstacles. When the predator and
prey robots were placed in the environment, sensory input
was received via the input units, and activation values were
passed to the two motor units and the teaching units. The
activation value of the two motor units was used to move
the robots, thus changing the sensory input for the next
simulation cycle. This cycle was then repeated.

3.2 Simulating the predators, prey, and the environment

There are several facts that must be taken into account
when designing a simulation model of a robot and its envi-
ronment. Miglino et al.21 elucidated that the responses of

the infrared sensors of different Kheperas vary because of
slight differences in the environment, such as ambient light
settings, color, and the shape of the objects. Given that
sensors respond in a significantly different way from other
sensors when exposed to the same external stimulus, two
different Khepera robots may perform very differently
from each other in identical conditions because of the dif-
ferences in the sensory characteristics. Thus, to simulate the
predator and prey robots and the environment as accurately
as possible, a sampling procedure described by Nolfi and
Floreano22 was reproduced in order to compute the activa-
tion state of the infrared and ambient light sensors. A real
Khepera was made to turn 360° at different distances with
respect to a wall and to an obstacle, whilst the activation
levels of the sensors were recorded. For the predators, the
activation levels of each of its eight infrared sensors and
eight light sensors were recorded for 180 orientations and
20 different random distances. The same was done for the
prey, but only for eight infrared sensors. The resulting
samples were then used by the simulator to set the activa-
tion levels of the simulated prey and predator agents
depending on their current positions in the simulated
environment.

Conservative position noise21 was added to make the
simulated agents perceive objects as if they were farther or
closer (with respect to a randomly selected axis) than they
really were, thus producing affects similar to those in a
physical environment that result from differences between
the illumination of objects, shadows, or slight physical dif-
ferences between objects of the same type. The same proce-
dure was used to sample the state of the ambient light
sensors for different orientations and distances with respect
to a light bulb. These recorded values, together with a geo-
metrical simulation of shadows, were then used in a simula-
tion to set the activation state of the ambient light sensors.
To simulate the Khepera’s motors, the approach described
by Jakobi et al.23 was used. Using the speed sensors of
Khepera and letting it move in the real environment, one
was able to set the activation level of the neural controller
input units, and to compute the displacement of the robot in
the simulated environment.

Fig. 2. A Sensor configuration
for the simulated predator
Khepera robots. B A two-layer
feed-forward “self-teaching”
neural network was used as the
predator controller. Outputs of
the teaching units were used by
the motor units as teaching input
in order to change the weights of
connections leading to the motor
units

A
B
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3.3 Evolution of the prey controller

Prior to the prey being placed in the pursuit–evasion simu-
lation environment with a predator team, the prey control-
ler was evolved (in simulation) for static and dynamic
obstacle avoidance. The training environment of the prey
was a 1000cm ¥ 1000cm rectangular arena surrounded by
walls with obstacles placed in random positions.

In the first set of training scenarios, in which static ob-
stacle avoidance behavior was being evolved, between 2
and 10 (randomly determined) uniform round objects, each
of 5.5cm diameter, were placed within the environment.
This obstacle type was used because they are perceived in
the same way independently from the point of view.21 The
obstacle diameter of 5.5cm was used as this is the diameter
of a Khepera robot. A minimum of 2 and a maximum of 10
objects were used, as this was the minimum and maximum
predator team size tested in the pursuit–evasion simula-
tions.

The prey performed an obstacle avoidance behavior by
moving forward as fast as possible, and moving in as straight
a line as possible and keeping as far away from objects as
possible. In order to evaluate prey performance, Eq. 121 was
used.

      
F V DV Ii i ii

= -( ) -( )=Â 1 12
1

1000
(1)

where Vi was the average rotation speed of the two wheels,
DVi was the algebraic difference between the signed speed
values of the wheels, and Ii was the activation values of the
proximity sensor with the highest activity at time i. The
fitness function was how far and have fast the prey could
move without colliding with an obstacle.

To evolve the obstacle avoidance behavior, a variation of
a standard genetic algorithm24 was used. The initial popula-
tion consisted of 100 randomly generated genotype strings
that encoded the connection weights of 100 corresponding
neural controllers. Initially, one genotype was randomly
selected from the population and decoded into the prey
controller. Each of the 100 genotypes in the population of
genotypes was systematically decoded into a neural control-
ler and tested.

At the end of a generation, after all genotypes in the
population had been tested and assigned a fitness, repro-
duction took place. Reproduction involved the selection of
the fittest 20% of genotypes from the population of geno-
types. Ten sets of parent genotypes were randomly selected
from within this 20% portion of genotypes, and each set of
parents produced five child genotypes. Single-point cross-
over was used to recombine two parent genotypes, and
mutation of a random value between -1.0 and +1.0 was
applied to each gene with a 0.05 degree of probability.

As illustrated in Fig. 1B, each prey neural controller
consisted of eight sensory neurons encoding the state of the
infrared sensors, and a bias unit directly connected with two
motor neurons that controlled the speed of the two wheels.
The activation state of the bias unit was always 1.0. The
genetic encoding scheme was a direct one-to-one mapping.
In this case, each connection weight corresponded to a float-

ing point number in the interval [-10, +10]. The genotype of
each prey controller thus consisted of 17 floating point val-
ues representing the 16 weights and the bias of the neural
network. Network architecture and learning rate were fixed
and identical for all controllers.

Ten replications of the experiment to evolve a static
obstacle avoidance behavior were made, where each experi-
ment ran for 500 generations. The prey “lived” for 50
epochs, where each epoch consisted of 1000 cycles of simu-
lation time. Each epoch constituted a test scenario, which
tested different randomly generated obstacle positions and
orientations and starting positions for the prey. At the end
of the prey’s lifetime, a fitness value was then assigned back
to the genotype. The assigned fitness of an individual prey
genotype was the sum of all its fitness for all epochs of its
life.

In the second set of training scenarios, in which dynamic
obstacle avoidance behavior was being evolved, the prey
with the fittest static obstacle avoidance controller was
placed in the same environment again, but with between
two and ten (randomly determined) predators. Here, the
predator controller was a heuristic pursuit behavior in
which the predator moved in a straight line, at maximum
speed, and in a random direction (using its infrared sensors
to follow an obstacle avoidance behavior) until the prey was
detected with it light sensors. The predator would then
move in a straight line toward the prey. If a predator col-
lided with the prey, the prey was awarded zero fitness, and
a new epoch was started. If the prey reached the end of an
epoch within its lifetime without colliding with a predator,
then it was awarded a fitness equal to its average speed
during the epoch (1000 cycles of simulation time). The fit-
ness of a given controller in a given generation was equal to
the sum of its fitness for all epochs of its lifetime. After ten
experimental replications, the controller with the highest
fitness was then selected as the controller to be used in the
pursuit–evasion simulations.

3.4 Neuroevolution for adaptive predator controllers

Two neuroevolution design approaches were comparatively
tested and evaluated for the task of having a predator team
immobilize either one or two prey. The design approaches
tested were termed single pool (SP) and multiple pools
(MP). Both approaches were tested with and without life-
time learning in the neural controllers. Approaches using
lifetime learning were known as the variant approaches. As
illustrated in Figs. 3 and 4, respectively, the SP approach
employed a single population of genotypes, whilst the MP
approach employed multiple populations of genotypes.
Each genotype was encoded with the parameters necessary
to perform a direct mapping from a set of neural network
weights (genotype) to a neural controller (phenotype) for
a predator. Each genotype population was 100 randomly
generated genotype strings that encoded the connection
weights of 100 corresponding neural controllers.

To derive prey capture strategies, a standard genetic
algorithm24 was applied to genotype strings in order to
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evolve a corresponding set of weights that, when mapped to
a neural controller, would prove effective in the formation
of a prey capture strategy. For the SP approach, n geno-
types were selected from the population of genotypes and
decoded into n controllers, where n depended upon the
predator team size, meaning that the predator team was
homogenous. The fitness assigned to each predator was
simply the fitness calculated for the single genotype that
specified the predator team. The main advantage of this
approach was its simplicity in terms of behavioral encoding
and calculation of team fitness. In the SP variant approach
(with lifetime learning), the difference was that individual
phenotypes were able to adapt during their lifetime as a

result of a self-teaching neural controller (presented in
Fig. 2B). This learning process was affected by both genetic
and environmental factors. Thus, predator phenotypes were
able to adapt to environmental influences throughout the
predators lifetime, which affected the fitness calculated for
the team genotype, which in turn influenced the selection
process in successive generations. The advantage of the SP
variant was that it allowed for behavioral specialization in
predators without being affected by the problem of needing
to estimate a fitness contribution of different predators to
the team as a whole.

For the MP approach, one genotype was selected from
each of n populations of genotypes and decoded into n
controllers, where n depended upon the predator team size,
meaning that the predator team was heterogeneous. Given
that selection operated within each of the genotype popula-
tions, and each predator controller corresponded to a geno-
type from a different population, predator behavior tended
to be dissimilar. In the MP variant approach (with lifetime
learning), behavior was adaptive within a predator’s life-
time as a result of a self-teaching neural controller (Fig. 2B).
The advantage of the MP approach was that it encouraged
behavioral specialization in the group of predators, in that
the evolutionary setup provided for more genetic diversity.
The disadvantage was that the assignment of individual
predator fitness was an approximation. Specifically, an
equal fitness score was assigned to each of the genotypes as
a means of deriving the contribution of each predator to the
performance of the team as a whole. So the fact that only an
estimation of the fitness of a predator existed constituted a
problem that may have prevented the selection of the best
individual genotypes across successive generations. This
evaluation is discussed in the following section.

For either the SP or MP approach, the 100 genotypes in
a population of genotypes was systematically decoded into a
neural controller and tested for each predator in the team.

Fig. 3. Single pool (SP) approach. Each predator phenotype (a two-
layer feed-forward neural controller) corresponds to a genotype
selected from a single population of genotypes and copied n times

Fig. 4. Multiple pools (MP) ap-
proach. Predator phenotypes (a
two-layer feed-forward neural
controller) correspond to n dif-
ferent genotypes selected from n
separate populations of geno-
types
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If the predator controllers were derived from the same
population of genotypes (SP approach), then a genotype
was selected randomly from the population and then
flagged as having been selected for a specific predator in the
team, so that it would not be selected and decoded as the
controller for that predator again.

As illustrated in Fig. 2B, each predator neural controller
consisted of 17 sensory neurons encoding the state of infra-
red and light sensors, and a bias unit directly connected with
two motor neurons that controlled the speed of the two
wheels. The activation state of the bias unit was always 1.0.
The genetic encoding scheme was a direct one-to-one map-
ping. In this case, each connection weight corresponded to a
floating-point number in the interval [-10, +10]. The geno-
type of each individual thus consisted of 33 floating-point
values representing the 32 weights and the bias of the neural
network. Network architecture and learning rate are fixed
and identical for all predator controllers.

Each predator controller was tested for a “lifetime” of 50
epochs, where each epoch (testing random starting posi-
tions and orientations) lasted for 1000 cycles of simulation
time. At the end of the controller’s lifetime, a fitness was
then assigned back to the genotype. In each epoch the fit-
ness of an individual predator controller was equal to the
number of simulation cycles for which the speed of the prey
equaled zero. The assigned fitness of the corresponding
genotype was then the sum of all its fitness value for all
epochs of its lifetime.

At the end of a predator’s (controllers) lifetime, repro-
duction took place. Reproduction involved the selection of
the fittest 20% of genotypes from the population of geno-
types. Ten sets of parent genotypes were randomly selected
from within this elite portion of genotypes, and each set of
parents produced 5 child genotypes. As illustrated in Fig. 5,
single-point crossover was used to recombine two parent
genotypes, and mutation of a random value between -1.0
and +1.0 was applied to each gene with a 0.05 degree of
probability. This process was repeated for the 500 genera-
tions that a simulation ran.

3.5 Fitness evaluation of the predator team

For the SP approach and its variant, a single genotype speci-
fied the entire predator team. That is, predators were clones
of each other, so the evaluation of team performance in this
case was not problematic. The performance of a predator
team executed under the SP approaches was simply mea-
sured as the fitness value assigned to the genotype that
specified the team. In contrast to these approaches, a preda-
tor team using the MP approach and its variant was speci-
fied by n genotypes selected from n different populations.
Hence, each genotype must be assigned an individual fitness
score, and team performance evaluation needed to be com-
puted by estimating the fitness contribution of each geno-
type to the team as a whole. A method of evaluation widely
known as fitness sharing25 was implemented for the MP
approaches, where an equal fitness score was assigned to
each individual genotype, thereby assuming that each indi-
vidual contributed to team performance equally. The ad-
vantage of this method was that fitness for individual
genotypes was easily calculated, and there was no disparity
between team fitness and the fitness of individual team
members.

3.6 Cooperative behavior control experiment

To demonstrate that cooperative behavior was required in
order for the prey to be immobilized, a control experiment
testing eight different pursuit–evasion scenarios was ex-
ecuted. For all scenarios, a single prey, utilizing the fittest
controller from the dynamic obstacle avoidance experi-
ment, was placed in the simulated environment with a single
predator. As with the standard predator controller evolu-
tion experiments (Sect. 3.4), the predator utilized was a self-
teaching two-layered feed forward controller in which the
weights were adapted either by an evolutionary process or
also via lifetime learning.

The first scenario tested one prey and one predator using
the SP approach for the evolution of prey capture behavior.
The second scenario tested one prey and one predator using

Fig. 5. The reproduction scheme
used for the production of off-
spring predator genotypes. An
elite portion (the fittest 20%) of
genotypes is selected from the
population at the end of the
predator teams’ lifetime; recom-
bination and mutation operators
were applied. The elite portion
then produces offspring geno-
types that replace the former
population
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the SP approach with lifetime learning. The third scenario
tested one prey and one predator using the MP approach
without lifetime learning. The fourth scenario tested one
prey and one predator using the MP approach with lifetime
learning. The next four scenarios tested the same experi-
mental setup as the former four scenarios, except that two
predators were tested instead of one. The configuration of
the evolutionary process was the same as that used for the
predator controller evolution (Sect. 3.4). After 10 replica-
tions of each experiment, where each replication was ex-
ecuted for 500 generations, results indicated that for all
experimental setups, a single predator was unable to immo-
bilize the prey for any period of time. However, two preda-
tors were able to immobilize the prey for short periods of
time in some instances. The results of using the latter four
experimental setups with two predators are presented in
Sect. 4.

4 Comparison of approaches

Ten replications of experiments testing the SP and MP
neuroevolution approaches were made, where each experi-
mental replication ran for 500 generations. The predator
team “lived” for 50 epochs. Each epoch consisted of 1000
cycles of simulation time. Each epoch constituted a test
scenario where all predators and prey were tested for differ-
ent, randomly generated orientations and starting positions
in the environment. This specific configuration for the
number of experimental replications, generations, epochs,
and cycles of simulation time was utilized given the success
of such experimental setups in previous evolutionary robot-
ics experiments.26–28 Ten different group configurations of
predators and prey were tested for both the SP and
MP approaches and their variants. These group confi-
gurations were named and defined as follows: group type 1,
2 predators and 1 prey, group type 2, 3 predators and 1 prey;
group type 3, 4 predators and 1 prey; group type 4, 5 preda-
tors and 1 prey; group type 5, 6 predators and 1 prey; group
type 6, 2 predators and 2 prey; group type 7, 3 predators
and 2 prey; group type 8, 4 predators and 2 prey; group type
9, 5 predators and 2 prey; group type 10, 6 predators and
2 prey.

5 Evaluation of cooperative behavior

In order to quantify the effectiveness of emergent prey-
capture strategies, two different measures were used to
evaluate performance. The first was predator team fitness,
where the fitness awarded to the team was equal to the
period of time for which a prey was immobilized during the
predator teams’ lifetime. The second measure was a statisti-
cal index termed the group stability index. Adapted from
Baldassarre et al.,29 this index measured how stable a par-
ticular geometric formation of a group of predators was
with respect to the prey for a given time period. Specifically,

the index measured how much the relative position of each
predator changed with respect to the other predators and
prey for a given time in the simulation. For example, if the
predators formed a circle about the position of a prey, the
index indicated for how long the predators maintained this
circle formation. If the predators were able to hold a certain
formation for an extended period of time, the index was
high, indicating high group stability.

6 Results

Ten sets of experiments were executed to test each group
type, where each experiment set tested the SP and MP
approaches and their variants.

6.1 Cooperative behavior performance

Figure 6 illustrates the average fitness attained for all preda-
tor group types using the SP and MP design approaches,
and their respective variants. The fitness value presented
for each group type equates with the average time for which
each prey in each of the experiments was immobilized by
the predator team. The average was taken over the 10 rep-
lications executed for each experiment. Figure 7 presents
the average group stability index (GSI) attained for all
predator group types using the SP and MP design ap-
proaches, and their respective variants. A GSI value close
to 1 represented high group stability in terms of the preda-
tors forming and moving in a particular group structure
whilst maintaining close proximity to a prey, whereas a GSI
value close to zero indicated poor group stability and there-
fore relatively little or no group structure.

6.2 Evolved behavior

For all ten group types tested using the SP design approach,
only two cooperative prey-capture strategies consistently
emerged. These strategies, termed entrapment and encircle-
ment, are illustrated in Fig. 8A and 8B, respectively, and
briefly described below.

In the encirclement strategy, at least three, and at most
four, predators moved to circle the prey, each moving in the
same direction in close proximity to the prey. The predators
would gradually move closer the prey, eventually forcing it
to become immobile. The strategy was only successful for
immobilizing a prey for relatively short periods of time,
given that the predators were not able to coordinate their
movements for extended periods.

Similarly, the entrapment strategy utilized at least three,
and at most four, predators, where all moved simulta-
neously towards a prey from different directions in order to
immobilize it within a triangular or square formation. As
with the encirclement strategy, all predators remained in
close proximity to the prey, except that they would “knock”
against it in order to prevent its escape. The entrapment
strategy was also hindered by a lack of coordination
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between the predators, and the number of prey-capture
instances was less than in the encirclement strategy, al-
though in an instance when a prey was cooperatively
trapped, prey-capture time was longer compared to the en-
circlement strategy. For all ten group types tested using the
SP variant design approach, only one emergent cooperative
prey-capture strategy was observed. This was a derivative of
the entrapment strategy and was termed role switcher.

In this strategy, a form of behavioral specialization
emerged during the lifetime of the predators. The role
switcher strategy used only three predators, where, as illus-
trated in Fig. 9, one predator moved to each side of the prey,
while another predator, termed a blocker, moved around

the flanking predators to approach the prey from the front,
in order to immobilize the prey within a triangular forma-
tion. When the prey moved to escape, the flanking preda-
tors moved also, turning one way to force the prey in a
specific direction. The blocker then moved around in order
to confront the prey again. This system of entrapment,
movement, and then entrapment continued for several
times before the prey was able to evade the predators.
Behavioral specialization was manifest such that a blocker
predator always moved alongside one of the flanking preda-
tors, and the roles of flanker and blocker switched between
two predators whenever a prey tried to evade the predators.
This dynamic adoption and switching of roles served to
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coordinate the movements of the predators and thus effec-
tively slow or immobilize a prey’s movement.

Observing the fitness (prey capture time) results pre-
sented in Fig. 6, it is obvious that experiments using a preda-
tor to prey ratio of 2 :1 (group types 2 and 10) yielded a
greater performance, in terms of prey capture time, than the
SP approach (under which the entrapment and encircle-
ment strategies emerged).

For all ten group types tested using the MP and MP
variant design approaches, only one emergent cooperative
prey-capture strategy was observed. As with the SP variant
experiments, the role switcher strategy was the only strat-
egy that consistently emerged, although a specific difference
was noted. Different predators adopted different roles from
the beginning of their lifetimes. Specifically, particular
predators always assumed the role of a flanker, while other
predators always assumed the role of a blocker or that of an
idle predator. This adoption of roles, maintained through-
out the lifetime of the predators, served to increase the
effectiveness of the role switcher strategy, and thus the
performance of the MP approaches. Observing Fig. 6, it can
be noted that the MP and MP variant approaches yielded a
greater performance than the SP approaches. Also, the MP
role switcher strategy was consistently effective at immobi-
lizing a prey for all group types tested.

7 Analysis and discussion

In this section the cooperative prey capture strategies that
emerged under the SP and MP approaches tested are dis-
cussed. The discussion relates the relative success of emer-
gent prey-capture strategies to the group types tested and
the performance measures defined.

SP. Two cooperative prey-capture strategies, each using at
least three predators, consistently emerged for all except
three predator group types. As is evident in Figs. 6 and 7,
compared to the SP variant and MP approaches, these strat-
egies performed poorly in terms of average team fitness.
That is, for all except group types 1 and 8, the fitness of
teams operating under the SP approach was lower than that
of teams operating under the SP variant approach. The low

fitness and group stability of the encirclement and entrap-
ment strategies was a result of physical interference that
occurred as three or more predators collectively ap-
proached a prey. This result was found to be due to con-
fused infrared sensor readings of predators in close
proximity to each other, and the fact that individual preda-
tors did not possess any memory, explicit form of communi-
cation, or coordination to facilitate a successful cooperative
prey capture strategy. As illustrated in Figs. 6 and 7, this
result was especially prevalent for group types 5, 6, and 7,
where the minimum or maximum predator to prey ratio was
utilized.

SP variant. In experiments using this approach, the role
switcher strategy emerged for all except four of the group
types tested. In the role switcher strategy, a form of dynamic
behavioral specialization emerged in groups of at least three
predators. This behavioral specialization was in the form of
dynamic role adoption that emerged during the lifetime of a
predator, and varied from predator to predator depending
upon the group type being tested. This dynamic role adop-
tion facilitated cooperation between the predators, afford-
ing the predator team a high average fitness and group
stability compared to the SP approach. As presented in
Figs. 6 and 7, this result was true for all group types tested
except 1, 5, 6, and 7. The role switcher strategy emerged
only when the predator to prey ratio was at least three
predators to one prey. Hence, it did not emerge for group
types 1 and 6, and it is theorized that for group type 5 the
number of predators collectively attempting to immobilize
a prey was too high, and for group type 7 the number of
predators was too low to manage the successful immobiliza-
tion of two prey. A dynamic assumption of roles during a
predator’s lifetime allowed for the formation of subgroups
in a predator team, yielding a high team fitness and group
stability for group type 10. As is evident from Figs. 6 and 7,
the fitness and group stability attained for group type 10 was
comparable to that attained for group type 2, where the
ratio of predators to prey was also 3 to 1. The lower fitness
and group stability evident in experiments testing group
types 3, 4, 5, 8, and 9, compared to experiments testing
group types 2 and 10, was a result of multiple predators
attempting to assume the same behavioral role. That is, the
strategy only persisted if there were three predators, two

Fig. 8. An example of the role-
switcher strategy that emerged
under the SP variant approach
and the MP approaches.
P0, prey; P1, predator 1 (role
knocker); P2, predator 2
(role rlanker); P3, predator 3
(role flanker)

A B C
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assuming the roles of flankers and one assuming the role of
a knocker. Additional predators served only to confuse the
strategy and cause it to fail.

It is theorized that behavioral specialization for the role
switcher strategy emerged as an indirect result of interfer-
ence that occurred when at least three predators collectively
approached a prey. Such interference was observed in the
SP experiments and often caused emergent strategies to fail
prematurely, thereby making it more difficult for such strat-
egies using at least three predators to be selected for, and
propagated by, the evolutionary process. Whereas the role
switcher strategy was able to achieve a high team fitness and
group stability (evident in Figs. 6 and 7), as with the strate-
gies emergent under the SP approach, it was at best only
able to slow the prey, and never completely immobilizing
it in experiments testing group types 5, 6, and 7 (Fig. 6).
Figure 6 also presents a higher fitness for the SP variant
(under which the role switcher strategy emerged) compared
to the SP approach for all except group type 1. This result is
readily explained, since this group type tested only 2 pre-
dators, and 2 prey, and the role switcher was only ever
observed forming with 3 predators. Thus, the dynamic
adoption of behavioral roles that defined the role switcher
strategy only proved effective in an environment with an
exact predator to prey ratio of 3 :1. The interference that
occurred between predators as they collectively approached
a prey prevented the role switcher strategy from immobiliz-
ing a prey in other instances. However, the lifetime learning
in the SP variant approach was able to exploit an environ-
ment with two prey via the dynamic formation of two spe-
cialized predator subgroups.

MP. In experiments testing the MP approach, only one
cooperative prey-capture strategy emerged. This strategy
was classified as a derivative of the role switcher strategy
(observed in the SP variant experiments) and utilized at
least two, and at most six, predators. The MP version of the
role switcher strategy prey capture used a genetic-based
specialization. In the SP variant experiments, the adoption
of specialized behaviors was dependent upon the positions
of the predators at a given time, whereas in the MP experi-
ments, different predators initially behaved differently and
assumed genetically predetermined roles prior to engaging
in the role switcher strategy. That is, one predator always
assumed the role of the blocker, whilst others always as-
sumed a flanking role, or that of an idle predator. Idle
predators served the purpose of reducing any potential in-
terference between predators as they collectively approach
a prey, and also increased the chance of success of the prey
capture strategy by limiting the number of predators that
constituted the strategy. The fact that the predators were
genetically different is one explanation for the evolution of
specialized behavioral roles that complemented each other
in the emergence of the MP role switcher strategy.

In experiments testing group type 1, both predators in
the simulation developed the complementary behaviors of
flanker and knocker. In experiments testing group type 2,
the three predators in the simulation developed the comple-
mentary behaviors of flanker, knocker, and idle predator. In

experiments testing group type 3, one predator evolved the
role of the knocker, another the role of an idle predator,
and the other two both evolved the role of a flanker. Two
predators having the same set behavioral role was detri-
mental to the role switcher strategy in that both contributed
to interference within the team strategy (reflected in the
results for group type 3 compared to other group types in
Figs. 6 and 7). That is, if both flankers were within sensor
range of the predator, and collectively attempted to ap-
proach the prey and simultaneously assume a flanking role,
the strategy dispersed and the prey would escape. In experi-
ments testing group type 4, one predator evolved the role of
the knocker, another the role of an idle predator, and the
other three evolved the role of flankers. As with experi-
ments testing group type 3, the same problem of physical
interference between team members with the same behav-
ioral role occurred. This is reflected in Figs. 6 and 7 by an
even lower team fitness and stability compared to that of
group type 3. In experiments testing group type 5, one
predator evolved the role of the knocker, another two the
roles of an idle predator, and the other three evolved
the roles of flanker. As can be highlighted in Figs. 6 and 7,
the results were comparable to those of the experiment
testing group type 4.

In the experiment testing group type 6, one predator
evolved the role of the knocker and the other evolved the
role of a flanker. However, as reflected in the results pre-
sented in Figs. 6 and 7, the presence of a second prey de-
tracted from the effectiveness of the role switcher strategy
given that if the second prey was in close proximity to the
first, then there was an increased chance that separate
predators would follow separate prey. In the experiment
testing group type 7, one predator evolved the role of a
knocker, the second evolved the role of a flanker, and the
third evolved the role of an idle predator. As can be high-
lighted in Figs. 6 and 7, the results were similar to those of
the experiment testing group type 6. In the experiments
testing group types 8, 9, and 10, two specialized subgroups
of predators always emerged. In the case of group type 8,
two subgroups, each consisting of two predators taking the
role of a knocker and a flanker, emerged. In the case of
group type 9, the same two subgroups once again emerged,
and the fifth predator developed the role of an idle agent.
The results were the same for the case of group type 10,
except that two predators developed the role of an idle
agent. The effectiveness of teams comprising two special-
ized subgroups is illustrated in Figs. 6 and 7 (group types 8,
9, and 10), which present a high average fitness and group
stability compared to other experiments testing scenarios
with two prey agents.

It can thus be noted that the MP approaches were more
effective than the SP approach at exploiting an environment
containing two prey. Specifically, the MP approach facili-
tated the evolution of specialization at the individual level
as well as at a subgroup level. That is, under the MP ap-
proach neural controllers evolved such that predators
would assume a set behavioral role from the beginning until
the end of their lifetimes. These behavioral roles were
complementary, such that multiple predators in close
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proximity in collective pursuit of a prey were sufficient for
the formation of an effective prey-capture strategy. The
overall effectiveness of the MP prey-capture strategy, com-
pared to those emergent under the SP approach, is evident
from the higher fitness and group stability index presented
in Figs. 6 and 7, respectively.

Additionally, observing the team fitness and stability re-
sults presented in Figs. 6 and 7, it can be noted that both the
SP and MP variant approaches (those with lifetime learn-
ing) were consistently able to achieve a higher level of
performance. These results are confirmed by previous re-
sults in evolutionary robotics experiments26–28 that sought to
investigate the impact of lifetime learning upon evolution in
terms of deriving neural controllers to successfully accom-
plish a given task. In predator teams using the SP and MP
approaches without lifetime learning, predator neural con-
trollers evolved a general solution to the prey-capture task,
and this solution was passed on through the genotype to
successive generations. This general solution was not opti-
mal because it could take into account the characteristics of
particular prey-capture scenarios, for example, scenarios
containing a single prey versus scenarios containing two
prey. In the case of approaches using lifetime learning, it
was theorized that the standard controller weights are in-
corporated the same general solution, and that learning was
able to refine an inherited strategy by taking into consider-
ation the specificity of a given predator–prey scenario.
Hence, lifetime learning results imply that the genotypes
(the inherited standard weights and the inherited teaching
weights) of evolved predator controllers with lifetime learn-
ing incorporated not a predisposition to behave efficiently,
but a predisposition to learn to behave efficiently.

8 Conclusions

This article has presented a set of experiments comparing
two neuroevolution approaches, and their variants, for the
synthesis of cooperative behavior within a team of simu-
lated robots (termed predators), where the task of the team
was to cooperatively immobilize one or two evader robots
(termed prey). The performance of the team was tested for
ten different group configurations of predators and prey.
Team performance was measured in terms of fitness (calcu-
lated as the total time for which a prey was immobilized by
a predator team over the course of the team’s lifetime), and
a group stability index. This index indicated how stable a
particular geometric formation of predators about a prey
was for a given period of time. The results presented indi-
cated the MP approach to be superior in terms of these
measures for all group types tested. The superiority of the
MP approach was found to be a result of a genetic form of
behavioral specialization that assigned behavioral roles at
the beginning a predator’s lifetime. The MP approach also
facilitated the evolution of specialized subgroups of preda-
tors in scenarios using two prey. These specialized sub-
groups aided in reducing physical interference between
predators as they collectively approached a prey. An analy-

sis of emergent strategies revealed that behavioral special-
ization was a necessary aspect of the emergence of effective
cooperative behavior in the described task domain. This
was especially evident in the SP experiments, where a low
fitness and group stability was observed. This was a result of
physical interference occurring between predators as they
collectively approached a prey. Also, approaches using life-
time learning were found to yield a superior performance
compared to the same approaches without lifetime learning.
Previous evolutionary robotics experiments26–28 support
this result where neural controllers with lifetime learn-
ing evolved a predisposition for learning effective task
accomplishment.

A comparison with other emergent cooperative behavior
approaches in the pursuit–evasion domain11,12,18 is difficult
given the real-world nature of the experiments described
here. That is, although the robots were simulated, the envi-
ronment was a continuous domain and the simulation incor-
porated noise in sensory data, namely confused infrared
sensor readings resulting from two or more Kheperas being
in close proximity to each other. These noisy sensor data
were a key reason for interference between multiple preda-
tors as they collectively approached a prey. Also, a continu-
ous environment does not allow for the selection of distinct
sets of situation/action values that are possible in grid-world
implementations18 where a finite set of actions and resultant
outcomes can be defined. However, the similarity in results
with other evolutionary robotics experiments placed within
real-world3 and simulated29 task environments that mandate
cooperative behavior elicits support for the supposition that
the adoption of specialized and complementary behaviors
by different agents in a team facilitates emergent coopera-
tive behavior.

Finally, experimental results highlighted that the MP
neuroevolution methodology is an effective method for de-
riving specialized behaviors that facilitate emergent coop-
erative behavior in a simulated multirobot system with no
explicit communication or coordination mechanisms.
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